118 research outputs found

    Time To Live: Temporal Management of Large-Scale RFID Applications

    Get PDF
    In coming years, there will be billions of RFID tags living in the world tagging almost everything for tracking and identification purposes. This phenomenon will impose a new challenge not only to the network capacity but also to the scalability of event processing of RFID applications. Since most RFID applications are time sensitive, we propose a notion of Time To Live (TTL), representing the period of time that an RFID event can legally live in an RFID data management system, to manage various temporal event patterns. TTL is critical in the "Internet of Things" for handling a tremendous amount of partial event-tracking results. Also, TTL can be used to provide prompt responses to time-critical events so that the RFID data streams can be handled timely. We divide TTL into four categories according to the general event-handling patterns. Moreover, to extract event sequence from an unordered event stream correctly and handle TTL constrained event sequence effectively, we design a new data structure, namely Double Level Sequence Instance List (DLSIList), to record intermediate stages of event sequences. On the basis of this, an RFID data management system, namely Temporal Management System over RFID data streams (TMS-RFID), has been developed. This system can be constructed as a stand-alone middleware component to manage temporal event patterns. We demonstrate the effectiveness of TMS-RFID on extracting complex temporal event patterns through a detailed performance study using a range of high-speed data streams and various queries. The results show that TMS-RFID has a very high throughout, namely 170,000 - 870,000 events per second for different highly complex continuous queries. Moreover, the experiments also show that the main structure to record the intermediate stages in TMS-RFID does not increase exponentially with the number of events. These illustrate that TMS-RFID not only has a high processing speed, but also has a good scalability

    Multi-Carrier NOMA-Empowered Wireless Federated Learning with Optimal Power and Bandwidth Allocation

    Full text link
    Wireless federated learning (WFL) undergoes a communication bottleneck in uplink, limiting the number of users that can upload their local models in each global aggregation round. This paper presents a new multi-carrier non-orthogonal multiple-access (MC-NOMA)-empowered WFL system under an adaptive learning setting of Flexible Aggregation. Since a WFL round accommodates both local model training and uploading for each user, the use of Flexible Aggregation allows the users to train different numbers of iterations per round, adapting to their channel conditions and computing resources. The key idea is to use MC-NOMA to concurrently upload the local models of the users, thereby extending the local model training times of the users and increasing participating users. A new metric, namely, Weighted Global Proportion of Trained Mini-batches (WGPTM), is analytically established to measure the convergence of the new system. Another important aspect is that we maximize the WGPTM to harness the convergence of the new system by jointly optimizing the transmit powers and subchannel bandwidths. This nonconvex problem is converted equivalently to a tractable convex problem and solved efficiently using variable substitution and Cauchy's inequality. As corroborated experimentally using a convolutional neural network and an 18-layer residential network, the proposed MC-NOMA WFL can efficiently reduce communication delay, increase local model training times, and accelerate the convergence by over 40%, compared to its existing alternative.Comment: 33 pages, 16 figure

    Validation of Reference Genes for RT-qPCR Studies of Gene Expression in Preharvest and Postharvest Longan Fruits under Different Experimental Conditions

    Get PDF
    Reverse transcription quantitative PCR (RT-qPCR), a sensitive technique for quantifying gene expression, relies on stable reference gene(s) for data normalization. Although a few studies have been conducted on reference gene validation in fruit trees, none have been done on preharvest and postharvest longan fruits. In this study, 12 candidate reference genes, namely, CYP, RPL, GAPDH, TUA, TUB, Fe-SOD, Mn-SOD, Cu/Zn-SOD, 18SrRNA, Actin, Histone H3 and EF-1a, were selected. Expression stability of these genes in 150 longan samples was evaluated and analyzed using geNorm and NormFinder algorithms. Preharvest samples consisted of seven experimental sets, including different developmental stages, organs, hormone stimuli (NAA, 2,4-D and ethephon) and abiotic stresses (bagging and girdling with defoliation). Postharvest samples consisted of different temperature treatments (4 and 22 °C) and varieties. Our findings indicate that appropriate reference gene(s) should be picked for each experimental condition. Our data further showed that the commonly used reference gene Actin does not exhibit stable expression across experimental conditions in longan. Expression levels of the DlACO gene, which is a key gene involved in regulating fruit abscission under girdling with defoliation treatment, was evaluated to validate our findings. In conclusion, our data provide a useful framework for choice of suitable reference genes across different experimental conditions for RT-qPCR analysis of preharvest and postharvest longan fruits

    DoF-NeRF: Depth-of-Field Meets Neural Radiance Fields

    Full text link
    Neural Radiance Field (NeRF) and its variants have exhibited great success on representing 3D scenes and synthesizing photo-realistic novel views. However, they are generally based on the pinhole camera model and assume all-in-focus inputs. This limits their applicability as images captured from the real world often have finite depth-of-field (DoF). To mitigate this issue, we introduce DoF-NeRF, a novel neural rendering approach that can deal with shallow DoF inputs and can simulate DoF effect. In particular, it extends NeRF to simulate the aperture of lens following the principles of geometric optics. Such a physical guarantee allows DoF-NeRF to operate views with different focus configurations. Benefiting from explicit aperture modeling, DoF-NeRF also enables direct manipulation of DoF effect by adjusting virtual aperture and focus parameters. It is plug-and-play and can be inserted into NeRF-based frameworks. Experiments on synthetic and real-world datasets show that, DoF-NeRF not only performs comparably with NeRF in the all-in-focus setting, but also can synthesize all-in-focus novel views conditioned on shallow DoF inputs. An interesting application of DoF-NeRF to DoF rendering is also demonstrated. The source code will be made available at https://github.com/zijinwuzijin/DoF-NeRF.Comment: Accepted by ACMMM 202

    When Internet of Things meets Metaverse: Convergence of Physical and Cyber Worlds

    Get PDF
    In recent years, the Internet of Things (IoT) is studied in the context of the Metaverse to provide users immersive cyber-virtual experiences in mixed reality environments. This survey introduces six typical IoT applications in the Metaverse, including collaborative healthcare, education, smart city, entertainment, real estate, and socialization. In the IoT-inspired Metaverse, we also comprehensively survey four pillar technologies that enable augmented reality (AR) and virtual reality (VR), namely, responsible artificial intelligence (AI), high-speed data communications, cost-effective mobile edge computing (MEC), and digital twins. According to the physical-world demands, we outline the current industrial efforts and seven key requirements for building the IoT-inspired Metaverse: immersion, variety, economy, civility, interactivity, authenticity, and independence. In addition, this survey describes the open issues in the IoT-inspired Metaverse, which need to be addressed to eventually achieve the convergence of physical and cyber worlds.info:eu-repo/semantics/publishedVersio

    Preparative Purification of Bioactive Compounds from Flos Chrysanthemi Indici

    Get PDF
    To understand the material basis and underlying molecular machinery of antiosteoporosis activity of the Flos Chrysanthemi Indici (FCI), the consequences of ethanol extract on the bone loss in mice induced due to ovariectomy (OVX) was evaluated. Also, the antiosteoporosis fraction obtained from the FCI ethanol extract was isolated and purified using a preparative high-speed countercurrent chromatography (HSCCC). The in vitro impact of the compounds was investigated on osteoblast proliferation and differentiation. The results revealed that ethyl acetate fraction with robust in vivo antiosteoporosis activity was obtained. The important compounds purified by HSCCC using gradient elution system included acacetin, apigenin, luteolin, and linarin. The four compounds enhanced the differentiation and proliferation of osteoblasts in MC3T3-E1 cells. They also augmented the mRNA levels of runt-related transcription factor 2 (Runx2), osteocalcin (OCN), osteopontin (OPN), and type I collagen (COL I). The AKT signaling pathway was also activated in MC3T3-E1 cells by the four compounds. The present study demonstrated that the antiosteoporosis effects of FCI did not depend on a single component, and HSCCC efficiently isolated and purified the antiosteoporosis bioactive compounds from FCI

    Radiomics Signature on Computed Tomography Imaging: Association With Lymph Node Metastasis in Patients With Gastric Cancer

    Get PDF
    Background: To evaluate whether radiomic feature-based computed tomography (CT) imaging signatures allow prediction of lymph node (LN) metastasis in gastric cancer (GC) and to develop a preoperative nomogram for predicting LN status.Methods: We retrospectively analyzed radiomics features of CT images in 1,689 consecutive patients from three cancer centers. The prediction model was developed in the training cohort and validated in internal and external validation cohorts. Lasso regression model was utilized to select features and build radiomics signature. Multivariable logistic regression analysis was utilized to develop the model. We integrated the radiomics signature, clinical T and N stage, and other independent clinicopathologic variables, and this was presented as a radiomics nomogram. The performance of the nomogram was assessed with calibration, discrimination, and clinical usefulness.Results: The radiomics signature was significantly associated with pathological LN stage in training and validation cohorts. Multivariable logistic analysis found the radiomics signature was an independent predictor of LN metastasis. The nomogram showed good discrimination and calibration.Conclusions: The newly developed radiomic signature was a powerful predictor of LN metastasis and the radiomics nomogram could facilitate the preoperative individualized prediction of LN status
    corecore